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Abstract: The density matrix equations describing nmr in chemically exchanging systems have been generalized to 
include the reaction AB + CD ̂ ± AC + BD, where the chemical species are labeled in terms of their exchanging 
parts. The calculation is first derived in terms of an integral representation and then, by differentiation, a Bloch-
like set of differential equations is obtained. A great simplification (which is called the permutation of indices 
method) is then made in the algebraic evaluation of the molecular reorganization which bypasses the previous need 
to define the "R" matrices. An explicit catalog of all possible interactions is then displayed as well as the form 
of the density matrix equation in the low rf power domain. A generalization of the relaxation operator (p)reiaxati<m 
= p/r used in the main part of the paper is given in Appendix II. 

Starting with the work of Gutowsky,l the effect of 
exchange processes on nmr spectra has been the 

subject of extensive theoretical and experimental in­
vestigation. The subject has been widely reviewed.2-5 

It is one of the few techniques which can be used to 
measure the rate of an exchange process in a system at 
thermodynamic equilibrium and has been applied to 
a variety of intramolecular reorganizations such as 
hindered rotation, configurational inversion, ring in­
version, certain molecular rearrangements, as well as 
different kinds of proton transfer processes.2-6 

The experimentally measured quantity, the magne­
tization, is obtained from the relation 

Mt0tai = XXc o n c e n tration i) Trp'M' 
i 

where M* is the magnetization matrix and pi is the 
density matrix of molecule "/." 

In principle the density matrix formalism for nmr 
line shapes, due to Kaplan6-7 and elaborated by Alex­
ander,8 applies to all cases of inter- and intramolecu-

(1) H. S. Gutowsky, D. M. McCaIl, and C. P. Slichter,/. Chem.Phys., 
21, 279 (1953); H. S. Gutowsky and A. Saika, ibid.. 21, 1688 (1953); 
H. S. Gutowsky and C. H. Holm, ibid., 25, 1288 (1956). 

(2) A. Loewenstein and T. M. Connor, Ber. Bunsenges. Phys. Chem., 
67,280(1963). 

(3) L. W. Reeves, Adcan. Phys. Org. Chem., 187 (1967). 
(4) C. S. Johnson, Adcan. Magn. Resonance, 1, 33 (1965). 
(5) G. Binsch, Top. Stereochem., 3, 97 (1968). 
(6) J. I. Kaplan, / . Chem. Phys., 28, 278 (1958). 
(7) J. I. Kaplan, ibid., 28, 462 (1958). 
(8) S. Alexander, ibid., 37, 967, 974(1962); 38,1787(1963); 40,2741 

(1964). 

lar reorganization processes in diamagnetic systems. 
Binsch9 has derived explicitly a density matrix for­
malism in Liouville space to describe the general case 
of intra- and intermolecular exchange. However, the 
notation and algebra in all these methods are of such 
complexity that they do not lend themselves to a simple 
physical understanding. Several approximate treat­
ments, involving modified Bloch equations,10 have ap­
peared but these mainly apply to first-order systems, 
weakly coupled.11-17 

It is the purpose of this article to reexamine the basic 
assumptions of the density matrix formalism and to 
show how, within this theoretical framework, a simple 
unified treatment may be easily derived to treat all 
intra- and intermolecular exchanging systems. The 
procedures are simple enough that they allow deriva­
tion of the density matrix equations without recourse to 
computer techniques. We believe that it is instructive 
to see displayed the principle features of these equations, 
features which are concealed by the black box char­
acter of computer algebraic calculations. 

(9) G. Binsch, J. Amer. Chem. Soc, 91, 1304 (1969). 
(10) F. Bloch, Phys. Rev., 70, 460 (1946). 
(11) H. M. McConnell and C. H. Holm, / . Chem. Phys., 28, 430 

(1958). 
(12) P. W. Anderson, J. Phys. Soc. Jap., 9, 316 (1954). 
(13) R. Kubo, ibid., 9, 935 (1954). 
(14) R. Kubo, Nuovo Cimento, Suppl, 6, 1063 (1957). 
(15) R. A. Sack, MoI. Phys., 1, 163 (1958). 
(16) M. Saunders, Tetrahedron Lett., 1699 (1963). 
(17) L. M. Reeves and K. M. Shaw, Can. J. Chem., 48, 3641 (1970). 
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In section I we derive the basic equations for nuclear 
magnetic resonance in reorganizing systems (NMRIRS) 
from a kinetic theory point of view (i.e., integral equa­
tion formulation) and then reexpress these results in 
an equivalent Bloch formulation (differential equation 
formulation).10 It is then shown, in section II, that 
if the basis representation is used the exchange oper­
ator becomes a permutation matrix which acts only to 
rearrange the order of the individual spin functions. 
Simplifications of the density matrix equations ap­
propriate to low rf power are made in section III. Then 
in section IV a general prescription for applying the 
method is presented and several examples are worked 
out. 

Appendices I and II treat respectively the equilibrium 
matrix and a more general theory of nuclear relaxa­
tion, and in Appendix III there are some remarks on 
the relationship of the preexchange lifetimes to rate 
constants and concentrations of species. It is our hope 
that with the simplified methods of writing down the 
density matrix equations that nmr line shape analysis 
will become a truly standard technique for kinetic 
studies of fast exchange in equilibrium systems. 

I. General Results 

Consider the general reaction 

AB + CD T-*- AC + BD (1) 

where the chemical species have been described in 
terms of their exchanging parts. The nuclear spin 
Hamiltonian4 is of the general form 

3CAB = 5 > o / J + YJJvI, + 

X)(Co1. cos wtlf - coi, sin utlt
y) = 3C° + 3C(O (2) 

i 

where w0> = ytH
z, uu = 1YiH1, and H1 and H1 are 

respectively the static applied field in the z direction 
and the magnitude of the circularly polarized radio 
frequency field in the x,y plane. 

If any one of the reacting species in (1) were isolated, 
it would obey the density matrix equation 

i P A B (Pn A B — PnAB) 

*" - V- *»• - Tb* - TJ (3> 
where T0D refers to the off-diagonal elements of the 
density matrix pAB and Tr, to the diagonal components. 
PoAB is the equilibrium density matrix for the isolated 
spin system. In this article we only consider the low 
power solution for NMRIRS. This implies that the 
diagonal elements of pAB will never be far from equi­
librium which allows us to ignore (PDAB — POA B)/7DA B-
Further with low power we obtain off-diagonal ele­
ments of the density matrix linear in the rf field and 
diagonal elements zero order in Zf1.

6-7 In this way (3) is 
rewritten as 

PAB =kpAB, 3CAB] - PAB/rAB (4) 
n 

A more general discussion of the "equilibrium density 
matrix" is given in Appendix I, and in Appendix II a 
generalization of the relaxation operator PAB/TAB is 
derived. 

Making the substitution (5) into (4) 

pAB = 0ABg-(/TAB ( 5 ) 

one obtains 

/SAB = l[pABt 3CAB] ( 6 ) 

n 

with the solution 

0AB(J) = sAB(?,f')pAB0,)(SAB(^?'))-1 

or (7) 

pAB(,) = e-( (- ' '>/rABSAB(- f ) />)pAB(-z/)(SAB(^>))-l 

For 3CAB independent of time it can be shown that 

S A B ( f / ) = e-*KAB«-i ' ) /* (g) 

and in general for any OCAB one can show that 

SAB = [KABS A B 

n 
(9) 

(SAB)-I = 1 (§AB)-13 ( ,A B 

n 

We are now in a position to obtain the density matrix 
for species AB in the exchanging system (1). Consider 
this reaction as shown in Scheme I, with the time in-

Scheme I 

© • © -
creasing from left to right. At time t' molecules AC 
and BD collide. After collision but just before they 
interact their density matrix will be a product 

PAC X P B D (10) 

just as the wave functions of the two independent sys­
tems are given as a product.6,7 One can obtain the 
density matrix of AB from product 10 by noting that 

TrBDpAC X pBD = pACTrBDpBD = PAC (11) 

using the relation Trp = 1. 
After formation of the collision complex a rearrange­

ment takes place and AB and CD emerge as products. 
We assume this happens so quickly that the individual 
nuclear spins remain unchanged during the time of the 
collision; i.e., the Hamiltonians of the molecules have 
changed while the wave functions have not. This is the 
so-called "sudden approximation."18 

The reorganization operator in an arbitrary represen­
tation is defined as 

R^ AC^BD = E C ^ A B V C D * (12) 

The system described by pAB X pCD after reorganization 
but before separation of products becomes19 

pAB(?') X pCD(f') —> RpAC(t') X P
BD(t ')R~1 (13) 

To bring about separation of pAB(t') (after exchange) 
from the right-hand side of (13), it is necessary to take 

(18) L. I. Schiff, "Quantum Mechanics," McGraw-Hill, New York, 
N. Y., 1949, p 211. 

(19) U. Fano, Rev. Modern Phys., 29, 74(1957). 
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the trace over CD, i.e., that portion which is diagonal in 
CD (eq 14) (e.g., see eq 11). 

pAB(f')(after exchange) = 

TrcD[*PAC0') X P^(S)Rr1] (14) 

To obtain pAB at time t we make use of eq 7. 

pAB(0 = e-»- , '>/rABsAB(/,/') X 

TrCD[PpA0(r') X pBD(i')i?-1KSAB(r,?'))-1 (15) 

Now, the probability of a pAB(f') which was formed at t' 
to survive to time / is 

- - ( J - C ) /TAB 

so the value of pAB at time t is given as the weighted 
probability of molecules AB being created at time t' and 
lasting until time t or 

P A B « = 

e-«-('>/rABSAB(/,OTrCD[£pAC(*') X 
o TAB 

pBc(/0i?-1K«AB('.O)-1 d'' (17) 

The time averaging used here is equivalent to eq 38 in the 
paper by Gutowsky, McCaIl, and Slichter.1 

A more useful form of eq 17 is obtained by differen­
tiating (17) with respect to " /" and using eq 9. The 
result is 

PAB(t) = ;[pAB, 3CAB] + — X 
n TAB 

[TrcD-Rp^P^^ 1 - PAB] - ^- (18) 
J- AB 

One should think of the second term on the right-
hand side of eq 18 as 

— [pAB (after exchange) — pAB (before exchange)] (19) 
TAB 

II. Evaluation of p (After Exchange). 
Permutation of Indices 

In this section we derive a procedure for obtaining 
pAB (after exchange) without the previous necessity of 
deriving the reorganization matrix. When the eigen-
function representation is used the matrix elements of 
R are complicated functions of the nmr parameters 
for the different species undergoing the exchange pro­
cess. Note however that these equations can be ex­
pressed in any representation. By use of product basis 
functions, denned as I^B = |n"i/w<) and Ii"\mt) = mt\m^), R 
becomes a permutation matrix P, symmetric about the 
diagonal and with all elements either 1 or 0. Using R 
in the basis representation greatly simplifies the evalua­
tion of p (after exchange). 

It is convenient to factor the basis functions for the 
individual species according to the parts which exchange. 
Thus for AB a and b are basis functions of A and B, 
respectively, and Î AB is given by 

I/'AB = ab (20) 

and corresponding expressions apply to the other species 

AB 4- CD 7 " ^ AC 4- BD 
states ab cd ac bd 

To evaluate pAB (after exchange) 

PABa»,a'&' (after exchange) = 

[TrCD*PAC X P215^-1UaV (22) 

for an arbitrary representation, it is necessary to per­
form the matrix multiplication and collect all terms 
diagonal in the states of CD. Using basis functions, 
the right-hand side eq 21 may be evaluated in an alter­
native manner. Before exchange a matrix element of 
pAB j s given by 

P A V « v = PAB
0*,avTrpCD 

(23) 
— T^nAB , ,„CD 
— / ,P ab,a'i'P cd,cd 

cd 

After exchange (23) becomes 

PABos,0'6' (after exchange) = Ep A C
K l « ' / D

S i , i ' i (24) 
cd 

Equation 24 is obtained from eq 23 by permutation 
of the basis function indices and relabeling of the p's 
according to the chemical and basis function descrip­
tion of the reorganization process (21). The permuta­
tion of indices method, PI method, allows one to evalu­
ate p (after exchange) without explicitly considering 
the form of the reorganization matrix and entirely 
avoids the matrix multiplication procedure indicated 
in (22). The PI method applies in all cases of intra-
and intermolecular reorganization and its application 
will henceforth be indicated by P. 

Proof of the validity of the" PI method is obtained as 
follows. The rows and columns of a product density 
matrix pAB X pCD, of the system in eq 21, are labeled 
by the appropriate products of basis functions of spe­
cies, abed and a'b'c'd', respectively. Recall, too, that 
in the basis function representation R = P is a sym­
metrical (about the diagonal) permutation matrix, 
with all elements either 0 or 1 and with P = P-1. A 
typical nonzero matrix element of [PpAC X P315P-1] is 
given by 

[PpAC X P 8 1 5 P - 1 W ^ w = (abcd\P\acbd){acbd\pAC X 

p™\a'c'b'd'){a'c'b'd'\P\a'b'c'd') (25) 

Since after exchange pAB is given as 

PABat,aV (after exchange) = 

[TrCDPpAC X PBDP-lU,aV (26) 

we must sum the right-hand side of (25) over the di­
agonal states of CD, cd. Performing this summation 
and labeling the individual p matrix elements, we obtain 
the remaining nonzero terms of (26), as 

2 (abcd\P\acbd)(acbd\pAC X 
cd 

pBD\a'cb'd)(a'cb'd\P\a'b'cd} (26a) 

which becomes after noting that (abcd\P\acbd) = 1, etc. 

PAB
a»,av (after exchange) = Z)pAC

a(;,a'cp
BD

M,6'a (27) 
cd 

which is identical with (23). 

III. Linear Response and High-Temperature 
Approximation 

In this section we obtain simplifications of eq 18 
which result from the high-temperature approximation 
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and from the use of low power. These allow the re­
moval of the rf driving term from the commutator and 
the dropping of terms in p (after exchange) which are 
products of off-diagonal density matrix elements. 

First, a unitary transformation on pAB 

[(^ u>oPAB/kT), W1I
1AB]ITT(IAB = 

-CO0O)I 

kT Yhz, Yh* 'TnrAB = 
- Z C O 0 W i , 

kTnA 
O; (37) 

_ o~ t w / ' A B ^ A B ^ w / ' A B t 

where 

AB = Yu 

(28) 

(29) 

takes one into the rotating coordinating system.20 Sub­
stitution of (28) into (18) gives 

/5AB0) = ~[PAB, K A B ] -
h 

where £fAB is the identity matrix in the space AB and 
«AB = TrtfAB. 

A second simplification of eq 18 involves the term 
p (after exchange) (27). The use of low rf power allows 
neglect of all terms in (27) which will be quadratic in 
coi, that is, all products of off-diagonal matrix elements. 
Also due to inequality (33) and eq 36 all diagonal 
density matrix elements pk,k

AB are given by 

P*,*AB ^ <&|p0AB|fc) ^ _ L 1_ 

« A B 
(38) 

1 

TAB 

where 3CAB is given as 

Equation 27 then becomes 

[ T W V ^ P - 1 - pAB] - p^ITAB (30) PABO6 aV ( a f t e r exchange) = 

3CAB = e 
0io)I*ABt, 3CABe -IQ)I1ABt 

AB AB AB 

£(co0j - Co)// + YJiM + 2>i/*x (3D 
i i>j i 

and the shift and driving frequencies are co0, and co1;, 
respectively. The last term in the right-hand side of 
(31) is called X1AB and 

YKa,a>)^ 
d « A C 

P bd.b'i + YKb,b')~p 
C WBD 

;AC (39) 

Finally the result of applying all the simplifications 
discussed in this section together with the steady state 
condition 

-p = 0 

gives in the product basis representation the density ma­
trix equation for the exchanging system 

3CAB = 3C0AB + 3C1AB (32) AB + CD ; 

Several simplifications of eq 30 now follow. Because 
the Hamiltonian is time independent, the steadystate 
solution of (28) will also be time independent which 
implies that /5AB = 0. Since we are assuming low rf 
power we can treat 2ZcOi1Zo,1 as a small perturbation so 
that i 

pA B ~ P0AE(CO1 = 0) + CO1P1AS 

Lastly we make use of the inequalities 

kT » /zcoo,. (33) 

coo, » Ja (34) 

and the experimental fact that only the position of the 
resonance peaks can be obtained accurately and not the 
absolute area under each peak. Thus, any time we deal 
with the amplitude of the peaks and not their position 
we can set co0i = co0 and co1( = Co1. We will refer to this 
as the amplitude approximation (AA). 

Substitution of (32) into the commutator in (30) leads 
to 

A B 

[pAB, 3CAB] = [PAB, 3C0AB] + [pAB, £coi/**] (35) 
i 

We show in Appendix I that at equilibrium 

p —onI*AB/kT 
pAB — £AB , ^ 

Tre -UtJ'AB/kT (36) 

Using eq 33 and keeping only terms linear in co1; the 
second commutator on the right-hand side of eq 35 
becomes 

(20) C. P. Slichter, "Principles of Magnetic Resonance," Harper 
and Row, New York, N. Y., 1963, p 26. 

n 
(db\\p™, X\B]\a'b') + 

7"AB 

£ 5 ( M ' ) — PACa 
c # B D 

; AC + BD 

. rf « A C 

nAB 
P ab,a't>' 

P bd.b'd T^ 

PABat>,a'b'/TAB 
-COoCO 1 

fcTh AB 

A B " 

Yii" 
_ i 

(40) 

or 

T P exchange I P re laxa t ion 

— COQCOI 

kTnkB 

AB 

YIi" (41) 

In eq 40 and 41 p and 3CAB are in the rotating frame. 
3C0AB does not contain the driving frequency term. 
Equation 41 as written applies only when basis functions 
are used. 

The set of inhomogeneous linear equations (eq 40) 
is constructed for all off-diagonal matrix elements be­
tween the states \m„) and \ma — 1) for which Ia

!\ma) = 
ma\ma) where a = AB, CD, AC, BD. The set of such 
equations can be written as 

„ e o l \ /Q 

[co/ + A] 

' PAB" 

P C D 0 0 ' 

/ 5 A C 0 < 

VPBD 

B 

AB 

'CD0 ' 

AC L
col 

^ col , 
\BBT3" 

vector with 

(42) 

elements PV"' is a column 
{ma\pa\ma— V) and Ba°°l is a column vector with ele­
ments (iu^ofilkTn^im^IJlm.,-1). The absorption (the 
magnetization transverse to the rf field in the rotating 
coordinate system) is given as 

Ab ~ ^(concentration a) TxpJa
y (43) 

Journal of the American Chemical Society / 94:9 / May 3, 1972 
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In terms of pV this can be written as 

Ab ~ ^(concentration a) Imag (P0T
1 • Ia°°l) (44) 

a 

where pY01-/,*'"'1 is the scalar product of the vectors 
pY"1 and the identity vector Ia

c and "Imag" means to 
take the imaginary part. 

Equation 42 is solved91721 by writing 

A = UgU-1 (45) 

where g is a diagonal matrix, and substituting this ex­
pression for A into eq 42, one then obtains 

pc = U(u + gy
 1U-1B" (46) 

We next multiply eq 46 on the left by the diagonal 
matrix c, where the diagonal elements spanning the 
same column elements occupied by PCAB in pc are con­
centration (AB), etc. The absorption is then given as 
the imaginary part of the scalar product of the 
vectors 

CU(u + g)-lU~lBc and F (47) 

i.e. 

Ab ~ Imag(Cf/(w + g)~xU~ 1B') • (F) (48) 

IV. Examples of Procedure 

Since matrix elements of nuclear spin Hamiltonians 
are straightforward to evaluate and well described in 
the literature, we restrict this section to the evaluation 
of p (after exchange) for different exchanging systems 
using the PI method of permuting labels and basis 
function indices. Several examples follow. 

Mutual exchange of fragments 

AB + CD T"*" AC + BD (49) 
states ab cd ac bd 

a'b' c'cl' a'c' b'd' 

P c V < v (after) = E P A V « , < P B V M ' (50) 
ab 

PACac,aV (after) = E P A B * « ' / D * . ' * (51) 
bd 

PBV,sv (after) = E /5 A Va> 'P c V^ (52) 
ac 

P A V « v (after) = Z>AC
MI«'«PBDM.»'<I (53) 

cd 

AB + B ^ l AB + B (54) 
states ab c ac b 

a'b' c' a'c' b' 

PAB
ai,aV (after) = £p-AVa'cPB

6v (55) 
C 

pt,e> (after) = 2>-AVae'A,6 = Ep"AVac' (56) 
ab a 

using £ > V = 1. 

Group transfer 
AB + CD T ^ ABC + D (57) 

states ab cd abc d 
a'b' c'd' a'b'c' d' 

/S4VaV (after) = E P A B C « » « S V / « (58) 
cd 

(21) R. G. Gordon and R. P. McGinnis, /. Chem. Phys., 49, 2455 
(1968). 

/5°Vc'a' (after) = 5>BV.«».'i&D«.,«' (59) 
ab 

PABV,aVc' (after) = EpAVaVPcV<'o- (60) 
d 

p D ^ (after) = I > V a > P C I V ^ (61) 
abc 

Dissociation recombination 

AB I T ^ A + B (62) 
states ab a b 

a'b' a' b' 

A4VaV (after) = p\,a>P
B

ilb, (63) 

p\,a' (after) = 2 > A V a ' S (64) 
6 

P V ' (after) = X>AVa*' (65) 
a 

Unimolecular conversion, includes hindered rotation 

A ^ Z t B (66) 
states a a 

a' a' 

ii\,a, (after) = p\,a> (67) 

Unimolecular mutual exchange 

A IZ± A (68) 
states ab ba 

a'b' b'a' 

^ V a V (after) = pV.sv (69) 

The contraction of these sums making use of the 
low rf power condition follows the method outlined 
in the previous section. 

General Conclusions 

We have shown how, by use of basis function factor­
ing in conjunction with the low power and high-tem­
perature approximations, respectively, density matrix 
equations for exchanging systems may be obtained in 
compact form. The product basis function representa­
tion is especially useful in that the exchange part can be 
concisely derived by direct reference to the chemistry 
of the exchange process and without explicitly writing 
down the exchange matrix. Our results, as described 
in eq 17-19 and 24, are true for all rf power levels. In 
this paper we have only obtained in detail the low rf 
(linear response) approximation. Equations for ex­
change under conditions of high rf in general will be 
nonlinear in p. Nonlinear response will be the sub­
ject of a future paper. Computer programs for cal­
culating nmr line shapes for exchanging systems, using 
the procedures of this paper, are being developed. 
These methods constitute a powerful tool for the in­
vestigation of fast reaction kinetics in equilibrium sys­
tems and vastly expand the scope of the nmr line 
shape method as it has been employed heretofore. 

Appendix I. Equilibrium Density Matrix 

For an isolated system denned by the Hamiltonian 
3CAB the density matrix is given as 

e -Xm/kT 

PAB = PoAB = T r e_jcA B / i f c r (Al ) 

Using the condition denned by eq 34 and the (AA) 

Kaplan, Fraenkel / Molecular Reorganization Effects on Nmr Line Shapes 
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approximation, eq Al simplifies as 

e-uaI'AB/kT 

PO* "Yfg—aivL'kK/kT 
(A2) 

which is just eq 36. 
We now must investigate the form of poAB when it is 

not isolated, i.e., when it "exchanges" with other sys­
tems. To do this most simply consider two systems 
A and B each consisting of a single spin. The diagonal 
component of the density matrix for the A and B 
systems is given as11 

PA
aa 

1 1 
(pB

aa ~ pAaa) - ~(pA
aa + P V J 

(A3) 

P3aa = ~(pAc,a ~ P* J ~ ( p B a a ~ P30aa) 
7 B TlB 

where 

(a\e~'"'AlA'/kT\a) 
P V * = <a(PoA[«) = J16-^i]JJkT- (A4) 

and similarly for pBoaa- In the steady state (i.e., pA
aa -

pB
aa = 0) one solves eq 3 and obtains 

P aa 

PA0aaTlA-\l/TB + 1/TIB) + p B 0 a Q r i B - 1 T A - 1 

(A5) 
(I/TA + i/r1A)(i/TB + i/r1B) - I/^ATB 

Applying condition (AA), which is equivalent to setting 

OiO CO0 = CO0 

or 

P A 0 a a = P B < W = PO0 

(a\e~ I«IA'/k T\ a) 
jre-walA-/kT 

one obtains 

PA<*» = P A o a Q 

(A6) 

(A7) 

(A8) 

Appendix II. Generalization of the 
Relaxation Operator 

In eq 4 we used for our relaxation form 

(/s)» = -P/T (A9) 

This usually will be sufficient, but for a more detailed 
theory one can use the relaxation matrix as derived from 
the Wangness-Bloch,9 Redfield theory.22 This as dis­
cussed in ref 20 is given in the energy eigenvalue 
representation |a) as 

( a | p J a ' ) r e l a x a t i o n = ^Raa'.pp'PSP' ( A l O ) 

We wish to show that by making certain assump­
tions and approximations we can introduce (p) relaxa­
tion which is sort of intermediate between eq A9 and 
AlO. 

(22) A. G. Redfield, IBMJ. Res. Develop.. 1, 19 (1957). 

Our assumption is that each spin interacts with its 
environment via a classical random magnetic field,20 i.e. 

3Cint = T,Hia{t)It
a a = 1, 2, 3 (All) 

ia 

and that the correlation function for the H's is given as 

(HUOHdt')) = M«**(| ' - t'\) (A12) 

The approximation we use is that as 

COo,- » / y (A13) 

the Zeeman energy alone is used explicitly in evaluating 
Raa'.ffl-

The result is that we are able to express eq AlO in 
the operator form as 

(A)relaXation = ~ O 1 M i I t [ P ^ ] , h*] + 
i 

[[p,hvl It*}} + l/ri2[[p,//], Ii']] (A14) 

A simple example of the use of eq A14 is to calculate 
Mx for a single spin, i.e. 

.% = -TrF[l/n{[[pJx],Ix] + [[P,IV],IV]} + 
Vrl[P,P],P]] = - ( 1 / n + 1/T2)M1 (A15) 

Appendix III. Rate Constants 

It is desirable to point out that the mean preex-
change lifetimes for the different species are simply 
related to the rate constants. These relationships are 
illustrated for the exchanging system 

AB + CD 
ki 

~*kT~ 
AC + BD (21) 

Noting that the r's are defined by eq A16 according to 
Grunwald, Loewenstein, and Meiboom,23 the other 
mean lifetimes are given by eq A17-A20. 

1 
TAB 

J_ 
TAB 

1 

TCD 

T-AC 

total rate of excl 
(AB) 

= /cf(CD) 

= fcf(AB) 

= /cr(BD) 

iange (A16) 

(A17) 

(A 18) 

(A 19) 

1"BD 
= MAC) (A20) 

Equivalent treatments apply to other systems. 
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